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INTRODUCTION

Classical structural reliability assessment techniques are based on precise and crisp (sharp)
definitions of failure and non-failure (survival) of a structure in meeting a set of strength, function and
serviceability criteria. These definitions are provided in the form of performance functions and limit
state equations. Thus, the criteria provide a dichotomous definition of what real physical situations
represent, in the form of abrupt change from structural survival to failure. However, based on
observing the failure and survival of real structures according to the serviceability and strength criteria,
the transition from a survival state to a failure state and from serviceability criteria to strength criteria are

continuous and gradual rather than crisp and abrupt. That is, an entire spectrum of damage or failure
levels (grades) is observed during the transition to total collapse. In the process, serviceability criteria
are gradually violated with monotonically increasing level of violation, and progressively lead into the
strength criteria violation. Classical structural reliability methods correctly and adequately include the
ambiguity sources of uncertainty (physical randomness, statistical and modeling uncertainty) by
varying amounts. However, they are unable to adequately incorporate the presence of a damage
spectrum, and do not consider in their mathematical framework any sources of uncertainty of the
vagueness type. Vagueness can be attributed to sources of fuzziness, unclearness, indistinctiveness,
sharplessness and grayness; whereas ambiguity can be attributed to nonspecificity, one-to-many
relations, variety, generality, diversity and divergence. Using the nomenclature of structural reliability,
vagueness and ambiguity can be accounted for in the form of realistic delineation of structural damage
based on subjective judgment of engineers. For situations that require decisions under uncertainty with
cost/benefit objectives, the risk of failure should depend on the underlying level of damage and the
uncertainties associated with its definition. A mathematical model for structural reliability assessment
that includes both ambiguity and vagueness types of uncertainty was suggested to result in the
likelihood of failure over a damage spectrum. The resulting structural reliability estimates properly
represent the continuous transition from serviceability to strength limit states over the ultimate time
exposure of the structure. In this section, a structural reliability assessment method based on a fuzzy
definition of failure is suggested to meet these practical needs. A failure definition can be developed to
indicate the relationship between failure level and structural response. In this fuzzy model, a subjective
index is introduced to represent all levels of damage (or failure). This index can be interpreted as either
a measure of failure level or a measure of a degree of belief in the occurrence of some performance
condition (e.g., failure). The index allows expressing the transition state between complete survival
and complete failure for some structural response based on subjective evaluation and judgment.
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STRUCTURAL RELIABILITY ASSESSMENT

The reliability of an engineering system can be defined as its ability to fulfill its design purpose
for some time period. The theory of probability provides the fundamental basis to measure this ability.
The reliability of a structure can be viewed as the probability of its satisfactory performance according
to some performance functions under specific service and extreme conditions within a stated time
period. In estimating this probability, system uncertainties are modeled using random variables with
mean values, variances, and probability distribution functions. Many methods have been proposed for
structural reliability assessment purposes, such as First-Order Second Moment (FOSM) method,
Advanced Second Moment (ASM) method, and computer simulation (Refs. 2 and 4). In this section,
two probabilistic methods for reliability assessment are described. They are 1) advanced second
moment (ASM) method, and 2) Monte Carlo Simulation (MCS) method with Variance Reduction

Techniques (VRT) using Conditional Expectation (CE) and Antithetic Variates (AV).

Advanced Second Moment (ASM) Method

The reliability of a structure can be determined based on a performance function that can be

expressed in terms of basic random variables Xi's for relevant loads and structural strength.

Mathematically, the performance function Z can be described as

Z = Z(XK, X2 ..... X,) = Structural strength- load effect (1)

where Z is called the performance function of interest. The failure surface (or the limit state) of interest
can be defined as Z -- 0. Accordingly, when Z < 0, the structure is in the failure state, and when Z > 0

it is in the safe state. If the joint probability density function for the basic random variables X/s is

f = Zx_._2 ......, (xl, x2 ..... x,), then the failure probability P, of a structure can be given by the integral

(2)

where the integration is performed over the region in which Z < 0. In general, the joint probability
density function is unknown, and the integral is a formidable task. For practical purposes, alternate

methods of evaluating Ps are necessary.

Reliability Index (Safety Index)

Instead of using direct integration as given by Eq. 2, the performance function Z in Eq. 1 can be

expanded using a Taylor series about the mean value of X's and then truncated at the linear terms.

Therefore, the first-order approximate mean and variance of Z can be shown, respectively, as

Z --_Z(X,, X 2..... X_) (3)

and
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where Coy(X,, X2)is the covariance of X, and Xj ; 2 = mean of Z; and o 2 = variance of Z. The partial

derivatives of _Z/_X_ are evaluated at the mean values of the basic random variables. For statistically

independent random variables, the variance expression can be simplified as

A measure of reliability can be estimated by introducing the reliability index or safety index [3 that is
based on the mean and standard deviation of Z as

= _ (6)

If Z is assumed to be normally distributed, then it can be shown that the failure probability PI is

P,=1-,i,(13) (v)

where • = cumulative distribution function of standard normal variate.

The aforementioned procedure of Eqs. 3 to 7 produces accurate results when the random
variables are normally distributed and the performance function Z is linear.

Nonlinear Performance Functions

For nonlinear performance functions, the Taylor series expansion of Z is linearized at some
point on the failure surface called design point or checking point or the most likely failure point rather

than at the mean. Assuming the original basic variables X/s are uncorrelated, the following
transformation can be used:

X_ - )(
Yi - (8)

Ox i

If X/s are correlated, they need to be transformed to uncorrelated random variables, as described by

Thrift-Christensen and Baker (Ref. 33) or Ang and Tang (Ref. 2). The safety index 13is defined as the

shortest distance to the failure surface from the origin in the reduced Y-coordinate system. The point
on the failure surface that corresponds to the shortest distance is the most likely failure point. Using the

(" :)original X-coordinate system, the safety index 13and design point X l, X; ..... X can be determined by

solving the following system of nonlinear equations iteratively for ]3:

°x,
_i = (9)

Ox_
i=1

X[ = X,- cz,13ox, (10)
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("Z Xl, X ..... X =0
(11)

where oti = directional cosine; and the partial directives are evaluated at design point. Then, Eq. 7 can

be used to evaluate PI" However, the above formulation is limited to normally distributed random

variables.

Equivalent Normal Distributions

If a random variable X is not normally distributed, then it needs to be transformed to an

equivalent normally distributed random variable. The parameters of the equivalent normal distribution

._ and c_xu , can be estimated by imposing two conditions (Refs. 27 and 28). The cumulative

distribution functions and probability density functions of a non-normal random variable and its
equivalent normal variable should be equal at the design point on the failure surface. The first condition

can be expressed as

N/Xi - Xi (12a)

The second condition is

(12b)

where F_ = non-normal cumulative distribution function; f = non-normal probability density function;

= cumulative distribution function of standard normal variate; and0 = probability density function

of standard normal variate. The standard deviation and mean of equivalent normal distributions can be

shown, respectively, to be

c_xu, = (13)
f(X;)

and

. / .)IN= X i - _- X i ax_ (14)

Having determined a u and ._U for each random variable, [_ can be solved using the same procedure of
Xi

Eqs. 9toll.

The advanced second moment method is capable of dealing with nonlinear performance
functions and non-normal probability distributions. However, the accuracy of the solution and the

convergence of the procedure depends on the nonlinearity of the performance function in the vicinity of
design point and the origin. If there are several local minimum distances to the origin, the solution
process may not converge onto the global minimum. The probability of failure is calculated from the

safety index 13using Eq. 7 which is based on normally distributed performance functions. Therefore,
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the resulting failure probability Pi based on the ASM is approximate except for linear performance

functions because it does not account for any nonlinearity in the performance functions.

SOURCES AND TYPES OF UNCERTAINTY

The following two viewgraphs show example sources of uncertainty, and a classification of
uncertainty types.

OBJECTIVES

The objectives of this presentation were to generalize structural reliability assessment methods
to account for ambiguity and vagueness sources of uncertainty, and demonstrate the developed methods
using ship structures. A viewgraph is provided with a statement of objectives.

Models and methods for merging different uncertainty sources in structural reliability
assessment were described. The methods were presented in a finite element analysis framework.
Also, intelligence in reliability computations with applications to marine vessels were discussed.
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OBJECTIVES

• Develop methods for structural reliability

assessment based on a generalized treatment of

uncertainty.

• Define failure events over a damage spectrum.

• Provide the reliability of the structure over the

damage spectrum.
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METHODOLOGY

The following figure shows a procedure for an automated failure classification that can be
implemented in a simulation algorithm for reliability assessment for ship structures as an example. The
failure classification is based on matching a deformation or stress field with a record within a
knowledge base of response and failure classes. In cases of no match, a list of approximate matches is
provided, with assessed applicability factors. The user is prompted for any changes to the approximate
matches and their applicability factors. In the case of a poor match, the user has the option of activating
the failure recognition algorithm shown in the next figure to establish a new record in the knowledge
base. The adaptive or neural nature of this algorithm allows the updating of the knowledge base of
responses and failure classes. The failure recognition and classification algorithm shown in the figure
evaluates the impact of the computed deformation or stress field on several systems of a structure. The
impact assessment includes evaluating the remaining strength, stability, repair criticality, propulsion
and power systems, combat systems, and hydrodynamic performance. The input of experts in ship
performance is needed to make these evaluations using either numeric or linguistic measures. Then, the
assessed impacts need to be aggregated and combined to obtain an overall failure recognition and
classification within the established failure classes. The result of this process is then used to update the
knowledge base.

The development of a methodology for the reliability assessment of continuum ship structural

components or systems requires the consideration of the following thre e components: (1) loads, (2)
structural strength, and (3) methods of reliability analysis. Also, the reliability analysis requires
knowing the probabilistic characteristics of the operational-sea profile of a ship, failure modes, and
failure definitions. A reliability assessment methodology can be developed in the form of the following
modules: operational-sea profile and loads; nonlinear structural analysis; extreme analysis and
stochastic load combination; failure modes, their load effects, load combinations, and structural

strength; library of probability distributions; reliability assessment methods; uncertainty modeling and
analysis; failure definitions; and system analysis. Each module can be independently investigated and
developed, although some knowledge about the details of other modules is needed for the development
of a module. These modules are described by Ayyub, Beach and Packard (Ref. 6).

Prediction of structural failure modes of continuum ship structural components or systems
requires the use of nonlinear structural analysis. Therefore, failure definitions need to be expressed
using deformations rather than forces or stresses. Also, the recognition and proper classification of
failures based on a structural response within the simulation process need to be performed based on
deformations. The process of failure classification and recognition needs to be automated in order to
facilitate its use in a simulation algorithm for structural reliability assessment. The first figure shows a
procedure for an automated failure classification that can be implemented in a simulation algorithm for
reliability assessment. The failure classification is based on matching a deformation or stress field with
a record within a knowledge base of response and failure classes. In cases of no match, a list of
approximate matches is provided with assessed applicability factors. The user can then be prompted
for any changes to the approximate matches and their applicability factors. In the case of a poor match,
the user can have the option of activating the failure recognition algorithm shown in the second figure to
establish a new record in the knowledge base. The adaptive or neural nature of this algorithm allows
the updating of the knowledge base of responses and failure classes. The failure recognition and
classification algorithm shown in the figure evaluates the impact of the computed deformation or stress
field on several systems of a ship. The impact assessment includes evaluating the remaining strength,
stability, repair criticality, propulsion and power systems, combat systems, and hydrodynamic
performance. The input of experts in ship performance is needed to make these evaluations using either
numeric or linguistic measures. Then, the assessed impacts need to be aggregated and combined to
obtain an overall failure recognition and classification within the established failure classes. The result
of this process is then used to update the knowledge base.
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A prototype computational methodology for reliability assessment of continuum structures
using finite element analysis with instability failure modes is described in this report. Examples were
used to illustrate and test the methodology. Geometric and material uncertainties were considered in the
finite element model. A computer program was developed to implement this methodology by
integrating uncertainty formulations to create a finite element input file, and to conduct the reliability
assessment on a machine level. A commercial finite element package was used as a basis for the
strength assessment in the presented procedure. A parametric study for a stiffened panel strength was
also carried out. The finite element model was based on the eight-node doubly curved shell element,
which can provide the nonlinear behavior prediction of the stiffened panel. The mesh was designed to
ensure the convergence of eigenvalue estimates. Failure modes were predicted on the basis of elastic
nonlinear analysis using the finite element model.

Reliability assessment was performed using Monte Carlo simulation with variance reduction
techniques that consisted of the conditional expectation method. According to Monte Carlo methods,
the applied load was randomly generated, finite element analysis was used to predict the response of the
structure under the generated loads in the form of a deformation field. A crude simulation procedure

can be applied to compare the response with a specified failure definition, and failures can then be
counted. By repeating the simulation procedure several times, the failure probability according to the
specified failure definition is estimated as the failure fraction of simulation repetitions. Alternatively,
conditional expectation was used to estimate the failure probability in each simulation cycle in this
study; then the average failure probability and its statistical error were computed.

The developed method is expected to have significant impact on the reliability assessment of
structural components and systems; more specifically, the safety and reliability evaluation of continuum
structures, the formulation of associated design criteria, evaluation of important variables that influence
failures, the possibility of revising some codes of practice, reducing the number of required costly
experiments in structural testing, and the safety evaluation of existing structures for the purpose of life
extension. The impact of this study can extend beyond structural reliability into the generalized field of
engineering mechanics.
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STRUCTURAL RELIABILITY ASSESSMENT

The general performance function of a

structural component or system according to a

specified performance criterion is expressed as

follows:

Z = strength - load effect

Z = g(X1, X2, "", Xn)

where Xi = basic random variable

g(.) > 0: survival event

g(.) = 0: limit state

g(.) < 0: failure event
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The probability of failure is determined by

solving the following integral:

Pf= _ J"" J fx_(Xl,X2,'",XrO dxldX2""dx n

where fx is the joint probability density function of

X = {Xl,X2,'",Xn) and the integration is performed over

the range where g(.) < 0
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UNCERTAINTIES

I. Ambiguity: (1)

(2)
(3)

Physical randomness

Statistical uncertainty

Model uncertainty

II. Vagueness: (1)

(2)
Definition of parameters

Inter-relationships among the

parameters
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CRISP FAILURE MODEL

Only two basic, mutually exclusive events,

complete survival and complete failure, are

considered, i.e.,

U--> {0,1}

where U = the universe of all possible outcomes

0 = failure level of the event complete

survival

1 = failure level of the event complete

failure
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complete
failure

Failure Level,

1.0

complete
survival

0.0
Rf

Structural Response, R

(e.g., curvature, deflection, etc.)

Rf = structural response at failure

R < Rf (c_=0) : complete survival

R = Rf : limit state

R > Rf (¢_=1) : complete failure
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FUZZY (CONTINUOUS) FAILURE MODEL

A subjective index, failure level (_, is introduced to

represent the intermediate levels of damage, i.e.,

U-+ A={c_:(_e [0, II }

where U = the universe of all possible otntc<)nnes

c_ = 0 : complete survival

0 < (_ < 1 : partial l'ailure

ct = 1 : complete failure

ct can be interpreted as the

failure condition.

degree of belief of a
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Failure Level, (x

complete 1.0
failure I I

' I
I

' i!

!

I
complete 0.0 I

survival R! R u

Structural Response, R

(e.g., curvature, deflection, etc.)

R! = lower bound of structural response

Ru = upper bound of structural response
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Degree of Belief of an Event, c_

1.0

0.0

Structural Response, R

(e.g., curvature, deflection, etc.)

Event Number

1

2

3

4

5

6

Definition

complete survival

low serviceability failure

serviceability failure

high serviceability failure

partial collapse

complete collapse
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If definitions of failure events are interpreted as "at

least low serviceability

failure, ..., or complete

is modified to

failure, serviceability

collapse," the above figure

Degree of Belief of an Event, t_

1.0

0.0

1 2 3 4 5

Structural Response, R

(e.g., curvature, deflection, etc.)
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STRUCTURAL PERFORMANCE CURVE

Resisting Moment (ft-tons)

I I

400,000 F" I-- r i

Hogging M _ment --'

200,000 ir- .......

,,
° .... /

:r _1 : J ggingMoInent.2oo, -! ,,%/8,
,.... .I_2 I

I I

-0.8 -0.4 0.0 0.4 0.8

Curvature _b( x 10 "5 )
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CRISP FAILURE MODEL

FOR STOCHASTIC M-q) RELATIONSHIP

Curvature (_)

I

1.0

Failure
Level (o0

0.0

fM

f
L

Moment (M)

Load (L)

fL = probability density function (pdf) of L

fM = conditional pdf of M at _ = _f
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The probability of failure is evaluated as

Pf = Prob { c_ = 1 }

= Prob { L > (M at _ = _)f) }

O0

= j"Prob{L>(mat_=_f)}fM(m)dm
0

O0

= S {1-FL(m)}fM(m)dm
0

where FL = cumulative distribution function of L
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FUZZY FAILURE MODEL

FOR STOCHASTIC M-_ RELATIONSHIP

Curvature (_)

-

Failure
Level ((x)

Moment (M)

1.0 t_f 0.0 _ Load(L)

fL

fL = probability density function (pdf) of L

fM = conditional pdf of M at _ = t_f
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The probability of failure is evaluated as

Pf ((xf) = Prob { Zlc_=c_f < 0 }

= Prob { M(_f) - L < 0 }

O0

= ["Prob{L>(mat_=_f)}fM(m)dm

l
l

0

O0

.["{1 - FL(m)} fM(m) d m
0

where FL = cumulative distribution function of L
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AVERAGE PROBABILITY OF FAILURE

I. Crisp Failure Model:

Pf, avg = Pf

II. Fuzzy Failure Model:

• Arithmetic average:

Pfa =

1

Pf(_) d_
0

I

d_
0

° Geometric average:

loglo(Pfg) =

1

ioglo (Pf(_)) do_
0

1

do_
0
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EXAMPLE I

Consider the following performance function:

Z = M- L = M(_) - L

where M = resisting moment (ft-tons)

L = external load (ft-tons)
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• Crisp Failure Model

The curvature at failure is specified as

_)f -- 0.30 x 10-s

The statistical characteristics of external moment

(L) and resisting moment (Mf):

Random

Variable

L

Mf

Mean Value

100x 103 ft-tons

244x103 ft-tons

Coefficient

of Variation

(cov)

0.30

0.10

Probability

Distribution Type

Extreme Value Type I

Normal
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• Fuzzy Failure Model

Failure Level (_)

0.2 0.25 0.275 0.325 0.35 0.4

-5
Curvature _ (x 10 )
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J

L,

*mm
e8

b.4
o

°mzz
M
Jmm

_J

o
L

60 I

50 --.........

411 -

10 -

o"m----
0.0

........... 4

I
I

k._ . .....

0.2 0.4 0.6 0.8

........ !

.... J

I

................. 4

, I

,, I

--41

1.0 1.2

Failure Level ( _ )

Fuzzy Failure-(1)

•"aik,-- Fuzzy Failure-(2)

Fuzzy Failure-(3)

-nO, m, Crisp Failure

The values of Pf were calculated using 1000 simulation cycles.
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|
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The values of Pf were calculated using 1000 simulation cycles.
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Average Probability of Failure for Example I

Failure

Model

Fuzzy 1

Fuzzy 2

Fuzzy 3

Crisp

Curvature at Failure

_f

0.2x10-5 to 0.4x10-5

0.25x10-5 to 0.35x10 -5

0.275x10-5 to 0.325x10-5

Arithmetic

Average of

Probability

of Failure

9.137x10-3

2.752x10-3

2.086x10-3

Geometric

Average of

Probability

of Failure

2.320x10-3

1.851x10-3

1.854x10-3

0.3x10-5 1.973x10-3 1.973x10-3
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EXAMPLE II- CASE A

serviceability failure

low serviceability failure

complete survival

Degree of belief

of an event (a)

0.19

1.0
0.236 0.240 0.30 0.33

high serviceability failure

partial collapse

complete collapse

0.36 0.37 0.39

0.0

0.21 0.216 0.24 0.26 031 0.32

Curvature _ ( x 10.5)

0.34 0.36 0.38 0.39
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¢,u

-u

t_.

1.0 "

0.8

0.6 _

0.4

0.2

0.0

.0001 .001 .01 .1

I==_[:}'= Event 1

Event 2

Event 3

Event 4

Event 5

Event 6

Probability of Failure Occurrence

The values of Pf were calculated using 1000 simulation cycles.
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Average Probability of Occurrence- Case A

Event

No.

1

2

3

4

5

6

Definition

complete survival

low serviceability

failure

serviceability

failure

high serviceability

failure

partial collapse

complete collapse

Arithmetic Average

of Probability

of Occurrence

0.940

1.611x10-2

8.718x10-3

4.944x10 -4

1.439x10 -4

2.847x10 -4

Geometric Average

of Probability

of Occurrence

0.940

1.583x10-2

8.396x10-3

4.782x10-4

1.424x10-4

2.846x10-4
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EXAMPLE II- CASE B

serviceability failure

low serviceability failure

complete survival

high serviceability failure

partial collapse

complete collapse

Degree of belief

of an event (o0

0.19

1.0

0.26 0.33 0.36 0.39

4 6

0.0

0.21 0.216 0.24 0.31

Curvature _ ( x 10 -s )

0.34 0.38
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1.0
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0.4_
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0.0
.0001
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=iq:p. Event 1

Event 2
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===Ii n Event 4
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The values of Pf were calculated using 1000 simulation cycles.

164



Average Probability of Occurrence - Case B

Event

No.
Definition

Arithmetic Average

of Probability of

Occurrence

Geometric Average

of Probability of

Occurrence

1

2

3

4 high

5

6

complete survival

low serviceability

failure

serviceability

failure

serviceability

failure

partial collapse

complete collapse

0.940

2.619x10-2

1.008x10-2

9.388x10-4

4.444x10-4

2.847x10-4
i

0.940

2.555x10-2

9.722x10-3

9.206x10-4

4.424x10-4

2.846x10-4
Ill
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UNCERTAINTY MEASURES

• Hartley Measure: Set theory

• Shannon Entropy: Probability theory

• Measure of Fuzziness: Fuzzy set theory

• U-Uncertainty: Possibility theory

• Measure of Dissonance: Theory of evidence

• Measure of Confusion: Theory of evidence
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UNCERTAINTY MEASURES

1

2

3

4

$

6

7

8

10

11

12

13

14

15

16

17

18

19

2o

A B C D E F G

Type or uncenainty Commenls ReferenceUncertainty measure

Hartley ambiguity

Shannon Entropy ambtguily crisp

U-uncertalnty ambiguity crisp

Fuzziness measure

Dissonance measure

ConJusion measure

vagueness

and

ambi_uily

conllicl

and

am bicju it_f

confusion

and

am bl(Juit_'

Type of sets or event.,

crisp

Theory type

set

sot

and

pr obabilit).'

set

and

possibility

A basic discrete measure.

A larger number of oulcomes

means tarter uncertaint_f

The closer the outcomes

to an equal liklihood, the

lar_ler the uncertainly

PossibilistlC counterpart

to Shannon entropy and

generalization 1o Hartley

measure

set

a,'_d

evidence

Uncertaint)f rantj(

[0.-)

Measures confusion of

evidence using theory ot

evidence

Hartley [1928]

[0,--) Shannon [1948]

[0,-) Higashi and Klir [1983]

set Measures the lack el Oeluca and Termnni

fuzzy and dislinclion between a set [0.-) l 1972, 1974.1 g 77)

fuzziness and its complement

set Measures conllict of

crisp and evidence using theory of [0,-) Yager [1983]

evidence evidence

crisp [0,--) Helle [1981]
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Start the ith

Simulation Cycle
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Knowledge
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Failure Classes
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Failure Classification
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Structural Response Due to

Extreme Combined Loads

GlobalDeformati.onsl l Stress Fields I [ LocalDeformations

#Impact Components

Impact of Structural Response

on Ship Performance
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Performance ] /_,_..-/S _ "__,_ [_ Performance
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[ Systems Systems

J
.I.

/ "_]f_JJ"_l Experts in Ship
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J
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Failure
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Experts in Ship
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Aggregated Impacton Ship Performance
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Importance Factors
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Components

Failure Recognition and Classification
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_oOl

STIFFENED PANEL

Alsumptions: b01 = L01 /4.666667 b03 = L03/4.666667

Stiffened Panel (dimensions and assumptions)
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Finite Element Mesh of the Stiffened Panel
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Plate Width Variability and Plate Distortion
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WEB TIL.TING (L|VEL-I)
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Web Height Variability and Web Tilting
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_* E B BOW ING (LEV[LS - O, I, Ind 2)

TEN GENERATED RANDOM VARIABLES: XB01,XB02,XB0$,XB04,XBOS

Web Bowing
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FLANGE TILTI_G _LI_V(L-2)
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ZZlL Z1)L. ZZJL, ZZ_L. _2SL
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Flange Width Variability and Flange Tilting
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I,. . . /Manual input
',_lnput numoer ot _ " 4,/ ....... /seed values to a file for , ._..

i/_'ml 'at'°n cyctes (,N)' /the first cycle, [---__J/'_

,' .-_ /SEED.INP /Over-write seed va,ues |
I /using lhe updated seed |

..... .................,,u:,....................
Read seed values. I _T

-=Generate random

numbers

Generate random variables //Library of subroutines for

I(material properties and _--Jrandom variables (e.g., CDF,

[geometry) F|PDF' inverseCDF)

iConstruct an input file to a

finite element program,

FEA INP FORTRAN Program

.....................-I........................_::_ ........
'"+' Run the finite element analysis ]_I_EA output file. I

(FEA) program in a batch mode [----_FEA.OUT. includes I

using FEA.INP F/deformations & s_

------------- Post-processing and failure ]
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--,. counting for reliability IInput failure definition assessment purposes
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Simulation cycle

C-Shell script file

(i-th cycle, Machine

Level)

Prepare Files
(FACTOR. EIGENV, PFAIL,

SUMPf, SUMPI2, STRENGTH,

Pf, cycle)

Delete previous Finite

Element-output files

Write load
parameter

{FACTOR)

\

Probabilily
Distributions

library

Read load data

distribution type, mean and
variance

Write statistics

(SDPf, COVPf)

Create FE-input file and
calculate related parameters

(Run Panel)

Run Finite Element

General Purpose

Program

Read in FE-output

(Run Grep)

1
Write [eigenvalues

Select, e. g. smallest

eigenvalue,
calculate strength, and

probability of failure

(Run Strength)

Compute Statistics I
(SDPf, COVPf)

_ probability of failure

Write

strength and

Update files(SUMP£ SUMP(2)

C-Shell Script Flow Chart for ith Simulation Cycle-Machine Level
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Geometric And Material Random Variables for the Stiffened Panel

Variable

no
Geometrical variables

Plate size (mm)

Notation

L0i

Mean value

854

Coefficient of

variation

(COV)

2 Plate thickness (mm) to 3.0 4%

3 Web thickness (mm_ t_ 4.9 4%

4 Flange thickness (ram) t2 5.84 4%

zP0iPlate-out of plane distortion
(mm)

Web height fmm) Llji

Standard

deviation

Web tilting (mm) X2ji

8 Web bowing (mm) XB0i

9 Flange width (mml L2ji

4.0

0.12

0.196

0.234

0.0 ! .0

31.08 2.5 % 0.77

0.0 0.5

0.0 0.1

25.4 2.5% 0.635

10 Flange tilting (mm) Z2i0, Z2iL 0.0

! l Modulus of elasticity (MPa) E 208000 4%

i 2 Poisson's ratio v

13 Yield stress (KPa) t Fy 250000 7%

0.2

8320

17500

Nominal yield stress = 240000 kPa
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Thicknesses and Plate Geometric Variables

Variable no.

global local

1 1

2 2

Geometrical variables Notation Mean value

(mm)

Coefficient
of variation

(COV)

Standard

deviation

(mm)

Panel width (side i) Lol 854.0 4.0

Panel width (side 3) Lo3 854.0 4.0

Plate thickness tp 3.0 4% 0.12

Web thickness t. 4.9 4% 0.196

3 3

4 4

5 5 Flange thickness tf 5.84 4% 0.234

6 6 Plate-out of plane distortion Zpoz 0.0 1.0

(corner2)

7 7 Plate-out of plane distortion 7-.e03

(corner3)

8 8 Plate-out ofplane distortion

(corner4)

0.0 1.0

0.0 1.0
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Variableno.

global local

9 I

10 2

I1 3

13 4

14 5

Web Height Variables

Geometrical variables Notation Mean value Coefficient of

(mmt variation

(COV)

Height of web no. ! (side I)

Height of web no. 2 (side I)

Height of web no. 3 (side 1)

Height of web no. 4 (side I)

Height of web no. 5 (side 1)

Height of web no. I (side 3)

Height of web no.2 (side 3)

Height of web no.3 (side 3)

Lijl 31.08 2.5%

Li]z 31.08 2.5%

LI. 31.08 2.5%

Lii4 31.08 2.5%

L]js 31.08 2.5%

Standard

deviation (mm)

0.77

0.77

0.77

0.77

0.77

0.77

0.77

0.77

0.77

0.77

15 6

16 7

17 8

18 9

19 10

Height of web no.4 (side 3)

Height of web no.5 (side 3)

Li31 3 I.OR 2.5%

L,z 31.08 2.5%

LI._ 31.08 2.5%

LI34 31.08 2.5%

L,_ 31.08 2.5%
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Web Tilting Variables

Variable no.

global local

20 1

21 2

22 3

23 4

24 5

Geometrical variables Notation Mean value

(mm)

Coefficient of

variation

(COY)

Standard deviation

(mm)

Tilting of web no.I (side !) X21t

Tilting of web no.2 (side 1) X2t2

Tilting of web no.3 (side I) Xn3

Tilting of web no.4 (side 1) X2t4

Tilting of web no.5 (side !) X215

0.0

0.0

0.0

0.0

0.0

0.5

0.5

0.5

0.5

0.5

25 6

26 7

27 8

28 9

29 10

Tilting of web no.l (side 3) X231

Tilting of web no.2 (side 3) X232

Tilting of web no.3 (side 3) X233

Tilting of web no.4 (side 3) X234

Tilting of web no.5 (side 3) Xz3s

0.0

0.0

0.0

0.0

0.0

0.5

0.5

0.5

0.5

0.5

Variable no.

global

45

46

47

48

49

local

1

2

3

4

5

Web Bowing Variables

Geometrical variables Notation Mean value

tmm)

Coefficient
of variation

(COV)

Standard

deviation (nun)

Bowing of web no. I (side 3) XBot

Bowing of web no. 2 (side 3) XB02

Bowing of web no. 3 (side 3) Xa03

Bowing of web no. 4 (side 3) XBo4

Bowing of web no. 5 (side 3) XB05

0.0 0.1

0.0

0.0

0.0

0.0

0.1

0.1

0.1

0.1
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Flange Width Variables

Variable no.

global local

30 1

31 2

32 3

33 4

34 5

Geometrical variables Notation Mean value

(ram)

Coefficient of

variation

(COV)

Width of flange no. 1 (side 1) L211 25.4

Width of flange no. 2 ( side !) L212 25.4

Width of flange no.3 ( side 1) L213 25.4

2.5%

2.5%

2.5%

2.5%

2.5%

2.5%

2.5%

Width of flange no. 4 ( side I)

Width of flange no. 5 ( side 1)

Width of flange no. 1 ( side 3)

L214 25.4

L215 25.4

L231 25.4

Standard

deviation (ram)

0.635

0.635

0.635

0.635

0.635

0.635

0.635

35 6

36 7

37 8

38 9

39 10

Width of flange no.2 f side 3)

Width of flange no.3 ( side 3)

Width of flange no.4 ( side 3)

Width of flange no.5 ( side 3)

L232 25.4

L233 25.4 2.5% 0.635

L234 25.4 2.5% 0.635

L235 25.4 2.5% 0.635
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Flange Tilting Variables

Variable no. Geometrical variables Notation

global

40

41

42

43

44

local

I Tilting of flange no. ! (side 1) 7-al0

2 Tilting of flange no.2 (side I ) 7-_zo

3 Tilting of flange no.3 (side 1) 7-a3o

4 Tilting of flange no.4 (side !) Z_o

5 Tilting of flange no.5 (side !) 7-_o

6 Tilting of flange no. 1 (side 3) Z_lL

7 Tilting of flange no.2 (side 3) Z2n.

8 Tilting of flange no.3 (side 3) ZZ3L

9 Tilting of flange no.4 (side 3) Z_L

10 Tilting of flange no.5 (side 3) 7-_L

Mean value Coefficient of Standard

(ram) variation deviation

(cov) (ram)

0.0 0.2

0.0 0.2

0.0 0.2

0.0 0.2

0.0 0.2

45

46

47

48

49

0.0 0.2

0.0 0.2

0.0 0.2

0.0 0.2

0.0 0.2
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Variable no. Material variables

global

50

51 2

52 3

53 4

54 5

55 6

local

1 Modulus of elasticity of
plate material (MPa)

Modulus of elasticity of web
material (MPa)

Modulus of elasticity of
flange material (MPa)

Poisson's ratio of plate

Poisson's ratio of web

Poisson's ratio of flange

Material Variability

Notation Mean Coefficient of

value variation (COV)

Eo

El

E2

Vo

vi

v2

Standard

deviation

208000 4% 8320

208000 4%

208000 4%

8320

8320

56 7 Yield stress of plate (kPa) 1

57 8 Yield stress of web (kPa) t

57 9 Yield stress of flange (kPa) l

Nominal yield stress = 240000 kPa

Fy0

Fyz

Fy2

250000 7% 17500

250000 7% 17500

250000 7% 17500
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Buckling Shape of the Stiffened Panel
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S_usu_| Measures Axial S_c_

Mean 273.0064

Standard Error 0.933275

Median 272.1663

Standard Dcv)ation 20.86865

435.5007Sample Vanance
Kurtosis 0.031126
Skcwncss

Rans¢
Minimum

b

Corm!
tCo¢_dence Level(95%)

0.278253 l

121.3818 I

219.5003J

340.8821_

136953.2_

5oo 
1.829182j

Axial Strength-500 cycles, Average = 273.9 (MPa)

02
°,,t
0,8)

004

0

Axial Sereagth ('IV[Pa)

Statnsucal Mcasu_-s tNonnahzed

Mean ___ 1.00221868

:Standard ]:)evtatmn

nce

Kunosis

0.07635806

0.03112581

Skewn_s 0.27825334

0.44413392

Maxzmu_n

Sum

Count

Confidence Level(95%)-- 0 006e929461

Normalized Axial Strength-500 cycles, Average = !.002

Normalized Asia] Stremgth

Axial Strength Statistics of the Stiffened Panel-500 Cycles
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Convergence of Average Probability of Failure

_'8 70E-04

6 0E-04

"_1 5 0E-04

11. • 30E.O4

ZL 2 0E'04

O 0E°00 o

Number of Cycles

Statistical Measm'es Probability
of Failure

Mean 0.000431

Standard Error 8.83E-O5

Ided.m 1.83E-05

Standard Dev,,,tion 0.001973

Sample vananc¢ 3.89E-O6
Kunosis 104.3045

9.528373

Range 0.025693
Mimmum 7.28E-I 1

MaxLm_m 0.025693

Sum 0.215415

Count 500

Co_:xleec¢ Level (95.0",;) 0.000173

140%

120%

100%

8O%

60%

40%

20%

00%

Probability of Failure-500 cycles, Average = 4.3E-4

P_abm_efF_

Probability of Failure Statistics of the Stiffened Panel-500 Cycles
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Penlllve pr¢|t|r!

STIFFENED PANEL SUBJECTED TO I. ATEIAL raEssuaE

T

Stiffened Panel Subjected to Lateral Pressure

35o Io ....................... O, ....................

" ................. -- ............ ""I ....................... ° ............

i 2001 • . . . . . ,, ,, . •/
t 160/ I

-0 O? -0 035 0 0,035 007

Lacelr'aJ Pres_lr_ (MPa)

Stiffened Panel Subjected to Concentric Axial Compression and Lateral Pressure
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PARAMETRIC ANALYSIS

A parametric analysis was conducted for the axial strength and failure probability of the panel.
The analysis was carried out by individually varying the coefficients of variation or standard deviations
of the basic random variables. The notations, mean values, and ranges of COV and standard deviations
of the random variables are given in the following table. The following observations were developed
based on the results of the parametric analysis using 100 simulation cycles:

For the plate width, a figure shows that increasing the COV from 0.47% to 0.94%, the normalized
strength decreases from 1.007 to 0.988, the COV of the axial strength decreases from 8.87% to

7.79%, and the average of probability of failure decreases from 8.20 x 10 -4 to 6.45 x 104.

For the plate-out of plane distortion, a figure shows that increasing the standard deviation from 1.0 to
3.0, the normalized strength increases from 1.007 to 1.009, the COV of the axial strength decreases

from 8.87% to 7.42%, and the average of probability of failure decreases from 8.20 x 10 -4 to 6.45 x
10-4.

For the web height, a figure shows that increasing the COV from 2.5% to 5.0%, the normalized
strength increases from 1.007 to 1.011, the COV of the axial strength decreases from 8.87% to

7.37%, and the average of probability of failure decreases from 8.20 × 10 -4 to 3.94 × 10-4.

For the web tilting, a figure shows that increasing the standard deviation from 0.2 mm to 0.5 mm, the
normalized strength increases from 1.005 to 1.007, the COV of the axial strength increases from

7.17% to 9%, and the average of probability of failure increases from 5.0 × 10 -4 to 8.45 × 10 -4.

For the web bowing, a figure shows that increasing the standard deviation from O. 1 mm to 0.2 mm,
the normalized strength decreases from 1.007 to 0.99, the COV of the axial strength decreases from

9.0% to 7.8%, and the average of probability of failure decreases from 8.20 x 10-4 to 4.84 × 10-4.

For the flange width, a figure shows that increasing the COV from 2.5% to 5.0%, the normalized
strength decreases from 1.007 to 1.004, the COV of the axial strength decreases from 9.0% to

7.26%, and the average of probability of failure decreases from 8.20 × 10 -4 to 2.23 x 10-4.

For the flange tilting, a figure shows that increasing the standard deviation from 0.2 mm to 0.5 nun,
the normalized strength decreases from 1.007 to 0.995, the COV of the axial strength decreases from

9.0% to 8.0%, and the average of failure probability increases from 8.20 x 10 -4 to 1.77 x 10-3.

For the thicknesses, a figure shows that increasing the COV from 4.0% to 8.0%, the normalized
strength decreases from 1.007 to 0.994, the COV of the axial strength increases from 8.87% to

13.0%, and the average of probability of failure decreases from 8.28 × 10 -4 to 1.53 × 10-2.

For the modulus of elasticity, a figure shows that increasing the COV from 4.0% to 8.0%, the
normalized strength decreases from 1.007 to 1.002, the COV of the axial strength remains constant at

the value of 8.90%, and the average of probability of failure decreases from 8.20 × 10 -4 to 1.49 ×
10-3.

The above failure probability observations were based on results from 100 simulation cycles.
The number of simulation cycles might not be adequate for obtaining accurate failure probability
results, but it is sufficient for determining the axial strength. The number of cycles was limited to 100
in order to make the study feasible within the planned time frame of the project.

190



A table shows a summary of the results of the parametric study. According to the table,
variations in the variability of plate size and web bowing produced the largest effect on the mean axial

strength ratio; whereas variations in the variability of thicknesses of the plate, webs, and flanges

produced the largest effect on the coefficient of variation of the axial strength.
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Variable

no.

6

7

8

9

10

I1

Variation of Coefficient of Variation or Standard Deviation

Geometrical variables Notation Mean value Coefficient of
variation

(cov)

Plate size (ram) LOi 854

Plate thickness (mm) to 3.0 4 to 8%

Web thickness (mm) h 4.9 4 to 8%

Flange thickness (mm) h 5.84 4 to 8%

Standard deviation

4.0 to 8

Plate-out of plane zPOi 0.0 1.0 to 3.0
distortion (ram)

31.08Web height (mm)

Web tilting (mm)

Web bowing (mm)

2.5 to 5%Llji

X2ji 0.0 0.2 to 0.5

XBOi 0.0 0.1 to 0.2

Flange width (mm) L2ji 25.4 2.5 to 5%

Flange tilting (mm) Z2i0, Z2iL 0.0 0.2 to 0.5

4 to 8%208000Modulus of elasticity
(MPa)

E
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2

3

4

5

6

7

8

9

10

I1

Variable
no.

Parametric Analysis Results

Geometrical Variables

Plate size (mm)

Plate thickness (mm)

Mean
value

854

3.0

Variation

of

coefficient

of variation

4 to 8%

4 to 8%Web thickness (mm) 4.9

Flange thickness (mm) 5.84 4 to 8%

0.0Plate-out of plane
distortion (mm)

Web height (mm)

Web tilting (ram)

31.08

0.0

0.0

25.4

Web bowing (mm)

Flange width (mm)

Flange tilting (mm) 0.0

Modulus of elasticity 208000
(MPa)

2.5to5%

2.5 to 5%

4 to 8%

Variation of

standard

deviation

4.0to8.0

Effect on axial

strength ratio

High

0. ! 2 to 0.24 Medium

0.196 to 0.392 Medium

0.234 to 0.468 Medium

1.0to3.0 Low

0.77 to 1.54 Low

0.2 to 0.5 Low

0.1 to 0.2 High

0.635tol.27

0.2to0.5

8320to16_0

Low

Medium

Low

Effect on
coefficient of

variation of

strength

Medium/Low

High

High

High

Medium/Low

Medium/Low

Medium/Low

Medium/Low

Medium/Low

Medium/Low

None
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Strength and Probability of Failure Due to Plate Distortion Variability
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WEB HI[IGHT (LEVEL-I)

TEN GENERATED RANDOM VARIABLES: Lilt, LI12, LII3, L 1.14, LIIS

LIlt, L152, LI3], LIJ4, LI]S

Web Height

i 1011 t •

101

1 007 •

10061 t * * i i

_ I% _ 3% 4% 5% 6%

Coe I_alem or Vm'laelms

900_8505

7S05

6005

0% I% 2% 3% 4% S%

Web Height

C_ilkJ_u or Varlsdoa

Web Height

o.ool !

0.0008 •

a, 0.0o04 I •

°°°°'o t ......
<

0% 1% 2*/* 3% 4% S% 6%

C_flkiem of VariatJoa

Strength and Probability of Failure Due to Web Height Variability
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wlrn TILTING (L[ylrL*I)

TEN GENERATED RANDOI*.I VAEIAnLIrS: X| I 1. X213. XII$o X214. XIIS

XIJI. XIJI, X233o X 154, XI)S

Web Tilting

1007 T100_ t n

+
I oo,iJ _ , , , , ,

0 01 02 03 04 05 06

D,¢_amm(ms)

Web TilcJn t

10%g%

7%

$%

0 0.1 0.2 0.3 0.4 0.5 0.0

l)e,,_*4_oa(Im)

Web Tilting

8 (l_._ t n

4 00E-04

O OOE*O0 1 l i _ _ i r
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RECOMMENDATIONS FOR FUTURE WORK

Based on this study, the following recommendations for future work are provided:

• The feasibility of using the developed method for complex structures with multiple failure modes
needs to be investigated. The structures need to be selected such that methods for failure recognition
and classification as previously demonstrated can be developed.

• The effects of failure recognition and classification for continuum structures on reliability estimates
need to be studied.

202



REFERENCES

°

.

.

.

.

.

.

.

.

10.

13.

14.

15.

Ang, A. H-S. and Tang, W. H., Probability Concepts in Engineering Planning and Design, Vol. I
- Basic Principles, John Wiley & Sons, NY, 1975.

Ang, A. H-S. and Tang, W. H., Probability Concepts in Engineering Planning and Design, Vol. H
- Decision, Risk and Reliability, John Wiley & Sons, NY, 1990.

Ayyub, B. M. and Chao, R.-J., Probability Distributions for Reliability-Based Design of Naval
Vessels, CARDEROCKDIV-U-SSM-65-94/12, Naval Surface Warfare Center, U.S. Navy,
Carderock, Bethesda, MD, 1994.

Ayyub, B. M. and Halder, A., "Practical Structural Reliability Techniques," Journal of Structural
Engineering, ASCE, Vol. 110, No. 8, 1984, pp. 1707-1724.

Ayyub, B. M. and Lai, K-L., "Structural Reliability Assessment with Ambiguity and Vagueness in
Failure," Naval Engineers Journal, 1992, pp. 21-35.

Ayyub, B. M., Beach, J. E. and Packard, T. W., "Methodology for the Development of
Reliability-Based Design Criteria for Surface Ship Structures," Naval Engineers Journal, 1995.

Boe, C., Jorgensen, I., Mathiesen, T. and Roren, E. M. Q., "Reliability Design Criteria for
Shipping Industry," Reliability Design for Vibroacoustic Environments, Det Norske Veritas, Oslo,
Norway, AMD Vol. 9, 1974, pp. 55-67.

Clarkson, J., The Elastic Analysis of Flat Grillages with Particular Reference to Ship Structure,
Cambridge University Press, 1965.

Dow, R. S., Hugill, R. C., Clark, J. D. and Smith, C. S., "Evaluation of Ultimate Ship Hull
Strength," Joint Society of Naval Architects and Marine Engineers/Ship Structures Committee
Extreme Loads Response Symposium, Arlington, VA, 1981.

Ellingwood, B., Galambos, T. V., MacGregor, J. C. and Cornell, C. A., Development of a
Probability Based Load Criterion for American National Standard A58, National Bureau of
Standards Publication 577, Washington, D.C., 1980.

Evans, J. H. (ed.), Ship Structural Design Concepts, Cornell Maritime Press, 1975.

Faravelli, L., "Stochastic Finite Elements by Response Surface Techniques," ASME, AMD Vol.
93, 1988, pp. 197-203.

Gerald, C. F. and Wheatley, P. O., Applied Numerical Analysis, Addison Wesley, third edition,
1984.

Grigoriu, M., "Methods for Approximate Reliability Analysis," Structural Safety, Vol. 1, 1982,
pp. 155-165.

Hasofer, A. M. and Lind, N. C., "Exact and Invariant Second-Moment Code Format," Journal of
Engineering Mechanics Division, ASCE, Vol. 100(EM1), 1974, pp. 111-121.

203



16.

17.

18.

19.

20.

21.

24.

25.

26.

27.

8.

29.

30.

31.

32.

Hess, P. E., Nikolaidis, E., Ayyub, B. M. and Hughes, O. F., Uncertainty in Marine Structural
Strength with Application to Compressive Failure of Longitudinally Stiffened Panels, Technical
Report CARDEROCKDIV-U-SSM-65-94/07, Carderock Division of the Naval Surface Warfare
Center, U.S. Navy Survivability, Structures and Materials Directorate, Nov. 1994, 63 pp.

Hisada, T. and Nakagiri, S., "Role of the Stochastic Finite Element Method in Structural Safety

and Reliability," Proceedings ICOSSAR, Vol. I, 1985, pp. 385-394.

Hughes, O. F., Ship Structural Design, SNAME, Jersey City, NJ, second edition, 1988 (first
edition published by Wiley 1983).

Liu, W. K., Belytschko, T. and Mani, A., "Probabilistic Finite Elements for Nonlinear Structural
Dynamics," Computer Methods in Applied Mechanics and Engineering, Vol. 56, 1986, pp. 61-81.

Liu, W. K., Besterfield, G. and Belytschko, T., "Transient Probabilistic Systems," Computer
Methods in Applied Mechanics and Engineering, Vol. 67, 1988, pp. 27-54.

Mansour, A. E., "Probabilistic Design Concepts in Ship Structural Safety and Reliability," The

Society of Naval Architects and Marine Engineers, 1972, pp. 1-25.

Melchers, R. E., Structural Reliability Analysis and Prediction, Ellis Horwood Ltd., U.K., 1987.

Mochio, T., Samaras, E. and Shinozuka, M., "Stochastic Equivalent Linearization for Finite

Element Based Reliability Analysis," Proceedings ICOSSAR, Vol. I, 1985, pp. 375-384.

Ostapenko, A., "Strength of Ship Hull Girders Under Moment, Shear and Torque," Joint Society
of Naval Architects and Marine Engineers�Ship Structures Committee Extreme Loads Response
Symposium, Arlington, VA, 1981.

Paik, J. K., "Tensile Behavior of Local Members on Ship Hull Collapse," Journal of Ship
Research, Vol. 38, No. 3, 1993, pp. 239-244.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., Numerical Recipe in
FORTRAN: The Art of Scientific Computing, second edition, Cambridge University Press, 1992.

Rackwitz, R. and Fiessler, B., "Note on Discrete Safety Checking When Using Non-normal
Stochastic Model for Basic Variables," Loads Project Working Session, MIT, Cambridge, MA,

1976, pp. 489-494.

Rackwitz, R. and Fiessler, B., "Structural Reliability Under Combined Random Load Sequences,"

Computers and Structures, Vol. 9, 1978, pp. 489-494.

Sarras, T. A., Diekmann, R. M., Matthies, H., Moore, C. S., "Stochastic Finite Elements: An

Interface Approach," OMAE, Vol. II, Safety and Reliability, ASME, 1993, pp. 57-63.

Shinozuka, M., "Basic Analysis of Structural Safety," Journal of Structural Engineering, ASCE,
Vol. 109, No. 3, 1983, pp. 721-740.

Simo, J. C. and Fox, D. D., "On a Stress Resultant Geometrically Exact Shell Model. Part I:
Formulations and Optional Parametrization," Computer Methods in Applied Mechanics and
Engineering, Vol. 72, 1989, pp. 267-304.

Spanos, P. D. and Ghanem, R., "Stochastic Finite Element Expansion for Random Media,"
Journal of Engineering Mechanics, ASCE, Vol. 115, No. 5, 1989, pp. 1035-1053.

204



33.

34.

35.

36.

Thrift-Christensen, P. and Baker, M. J., Structural Reliability Theory and Its Applications,

Springer Verlag, NY, 1982, pp. 96-101.

Vanmarcke, E. and Grigoriu, M., "Stochastic Finite Element Analysis of Simple Beams," Journal
of Engineering Mechanics, ASCE, Vol. 109, No. 5, 1984, pp. 1203-1214.

Vanmarcke, E., Shinozuka, M., Nakagiri, S., Schtieller, G. I. and Grigoriu, M., "Random Fields
and Stochastic Finite Elements," Structural Safety, Vol. 3, 1986, pp. 143-166.

White, G. J. and Ayyub, B. M., "Reliability Methods for Ship Structures," Naval Engineers
Journal, 1985, pp. 86-96.

205




